在小学数学的数与代数的教学中,如何渗透数学思想方法-

网上有关“在小学数学的数与代数的教学中,如何渗透数学思想方法?”话题很是火热,小编也是针对在小学数学的数与代数的教学中,如何渗透数学思想方法?寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。

1、位置制思想:如一年级“生活中的数”数一把豆子要用到“十”、“百”等较大单位---

2、转化的思想;新知一般都是转化为已学过的知识点来探索的,这样的例子在学习中太多了.

3、算法多样化;每一种算法都是学生的一个“发明”,不同的人对不同的算法有不同的理解,只要他认为好就是好的,老师不要强加干涉,这样的例子就不举了.

4、探究思想

如何在小学数学教学中渗透数学模型思想

360问答

如何在小学数学课堂教学中渗透数学思想方法

sun1432 LV9

2015-05-28

满意答案

uwkgly

LV10

推荐于2016-06-17

1.渗透数学思想方法的本质

所谓数学思想,是指现实世界的空间形式和数量关系反映到人的意识之中,经过思维活动而产生的结果,它是对数学事实与数学理论的本质认识。所谓数学方法,是指解决数学具体问题时所采用的方式、途径和手段,也可以说是解决数学问题的策略和手段。数学思想是数学方法的灵魂,是数学方法的理论基础,数学方法是数学思想的表现形式和得以实现的手段,由于小学数学是最基本的数学知识,内容简单,所蕴涵的思想和方法很难截然分开,其本质往往是一致的,因此在小学数学教学中可以把数学思想和方法看成一个整体,称之为数学思想方法。

学习数学的目的“就意味着解题”,解题关键在于找到合适的解题思路,数学思想方法就是帮助构建解题思路的指导思想。它对学生以后的学习、生活和工作长期起作用,并使其终生受益。因此,在教学中向学生渗透一些基本的数学思想方法,是数学教学改革的新视角,是培养学生分析问题和解决问题的重要途径,也是促进学生数学思维能力发展的重要方法。

2.及时渗透数学思想方法

为了更好地在小学数学教学中渗透数学思想方法,教师不仅要对教材进行研究,潜心挖掘,而且还要讲究思想渗透的手段和方法。

在践行教学中,我结合教材内容,及时向学生渗透数学思想方法:

(1)在新授知识课中渗透。如在《三角形分类》一课中,先给学生提供三角形学具,然后放手让学生尝试对三角形进行分类,学生从关注三角形的角与边的特征入手,借助学具看一看、比一比、量一量、分一分、寻找特征、抽象共性,在比较中将具有相同特征的三角形归为一类,在分类中抽象出图形的共同特征。这样的教学,学生经历了三角形分类的过程,渗透了分类、集合的数学思想。

(2)在知识的形成过程中渗透。如概念的形成过程,结论的推导过程等,这些都是向学生渗透数学思想和方法的极好机会。例如,在“面积与面积单位”一课教学中,当学生无法直接比较两个图形面积的大小时,引进“小方块”,并把它一个一个地铺在被比较的两个图形上,这样,不仅比较出了两个图形的大小,而且,使两个图形的面积都得到了“量化”。使形的问题转化为数的问题。在这一过程中,学生亲身体验到“小方块”所起的作用。接着又通过“小方块”大小必须统一的教学过程,使学生深刻地认识到:任何量的量化都必须有一个标准,而且标准要统一。很自然地渗透了“单位”思想。

(3)在问题的解决过程中渗透。如:教学“鸡兔同笼”这一课时,在解决问题的过程中,用图表、课件展示的方法让学生逐步领会“假设”这种策略的奥妙所在。如教学“梯形面积”这一单元之后,我及时帮助学生依靠梯形面积的推导过程回忆平行四边形的面积、三角形的面积公式的推导方法,使学生能清楚地意识到:“转化”是解决问题的有效方法。

3.提炼和运用数学思想方法

渗透数学思想方法的教学,不仅是为了指导学生有效地运用数学知识、探寻解题的方向和入口,更是对培养人的思维素质有着特殊不可替代的意义。在教学中,通过数学思想方法的广泛应用,让学生从主观上重视数学思想方法的学习,进而增强自觉提炼数学思想方法的意识。教师对习题的设计也应该从数学思想方法的角度加以考虑,尽量多安排一些能使各种学习水平的学生深入浅出地作出解答的习题,它既有具体的方法或步骤,又能从一类问题的解法去思考或从思想观点上去把握,形成解题方法,进而深化为数学思想。例如;在教学完多边形面积的计算以后,可以由易到难,出几题运用移动、割补等方法解决的实际问题,这样做不仅可以让学生领会到转化的数学思想方法,对提高学生的学习兴趣也大有好处。让学生在操作中掌握,在掌握后领悟,使数学思想方法在知识能力的形成过程中共同生成。

重视加强对学生进行数学思想方法的渗透不但有利于提高课堂教学效率,而且有利于提高学生的数学文化素养和思维能力。因此,在教学过程中,要有机地结合数学知识的内容,做到持之以恒、循序渐进和反复训练,才能真正有效地对学生进行数学思想方法的渗透。

如何在小学数学教学中渗透模型思想

一、在创设情境时,感知数学建模思想。情景的创设要与社会生活实际,时代热点问题,自然,社会文化等与数学有关系的各种因素相结合。激发学生的兴趣,使学生用积累的生活经验来感受其中隐含的数学问题,从而促进学生将生活问题抽象成数学问题,感知数感

知数学模型的存在。学习数学的起点是培养学生以数学眼光发现数学问题,提出数学问题。

在教学中教师就应根据学生的年龄及心理特征,为儿童提供有趣的、可探索的、与学生生活实际密切联系的现实情境,引导他们饶有兴趣地走进情境中,去发现数学问题,并提出数学问题。

二、在探究知识的过程中,体验模型思想。

善于引导学生自主探索、合作交流,对学习过程、学习材料、主动归纳。力求建构出人人都能理解的数学模型。

例如:在推导圆柱体积公式一节课中,教师要有目的让学生回顾平行四边形,三角形、

梯形、圆几种平面图形面积的推导过程是怎样的?学生会想起通过割、补、平移、旋转等方

法拼成学过的图形,那么今天我们要探究的是圆柱的体积,你们怎样来推导它的公式?这样

学生很自然的想到一个新知识都是用旧知识来分解,从中找到新知识的内在模型。

三、新知识的结论,就是建立数学模型。

加法,减法,乘法、除法之间的内在联系。各类应用题的解题规律,各类图形的周长

与面积、体积的公式都是各种数学模型,学生有了这种模型思想才能应用它解释生活中的现

实问题。

在解决问题中,拓展应用数学模型。用所建立的数学模型来解答生活实际中的问题,让学生能体会到数学模型的实际应用价值,体验到所学知识的用途和益处,进一步培养学生应用数学的意识和综合应用数学解决问题的能力,让学生体验实际应用带来的快乐。

例如:我在教学“平行四边形面积的计算”时,采用了探究式的学习方法,使学生在获取数学知识的同时,数学思维和学习能力也得到了培养。

1.让学生充分参与与操作活动

数学知识具有抽象性,但来源于生活实际,加强教学中的实践活动,不仅有助于学生理解抽象的数学知识,而且可以通过让学生参与操作活动,促进学生的思维发展。如:在探究

平行四边形面积的计算方法时,我为学生设计了这样的操作活动:让他们通过剪一剪,拼一拼,想办法把平行四边形转化为已学过的图形,然后利用已有知识来推导它的面积计算方法,这就为学生创设一个“做数学”的机会,学生在操作前必须动脑思考,想好了才能动手剪拼,通过实际操作,多数学生都将平行四边形剪拼成了长方形,这样学生在积极参与操作活动的过程中,不仅促进了他们的思维发展,而且提高了他们的操作技能。

2.让学生积极参与交流活动

四、解释与应用中体验模型思想的实用性。

如在学生掌握了速度、时间、路程之间关系后,先进行单项练习,然后出示这样的变式题:

1.汽车3小时行驶了270千米,5小时可行驶多少千米?

2.飞机的速度是每小时900千米,飞机早上11:00起飞,14:00到站,两站之间的距离是多少千米?

学生在掌握了速度乘时间等于路程这一模型后,进行变式练习,学生基本能正确解答,

说明学生对基本数学模型已经掌握,并能够从3小时行驶了270千米中找到需要的速度,从11:00至14:00中找到所需时间。虽然两题叙述不同,但都可以运用同一个数学模型进行解答。掌握了数学模型,学生解答起数学问题来得心应手。

综上所述,数学建模思想的形成过程是一个综合性的过程,是数学能力和其他各种能力协同发展的过程。在数学教学过程中进行数学建模思想的渗透,可以使学生感觉到利用数学建模的思想解决实际问题的妙处,进而对数学产生更大的兴趣。这也给我们一些启发:在对学生进行模型思想渗透时,要从现实生活出发,从实物出发,这样才可以让学生更快地接受,

更快地理解;在渗透这些思想时,教师首先需站在更高的高度上去考虑;在教学过程中,通

过引导学生处理问题,可以让学生更快、更有兴趣地跟踪教师的思路。在小学数学教材中,

模型无处不在。小学生学习数学知识的过程,实际上就是对一系列数学模型的理解、把握的

过程。在小学数学教学中,重视渗透模型化思想,帮助小学生建立并把握有关的数学模型,

有利于学生握住数学的本质。通过建模教学,培养学生应用数学的意识和自主、合作、探索、

创新的精神,为学生的终身学习、可持续发展奠定基础。因此在数学课堂教学中,逐步培养

学生数学建模的思想,形成学生良好的思维习惯和应用数学的能力。

如何在小学数学教学中渗透数学思想方法

模型思想在数学思想方法中有非常重要的地位。正是因为数学在各个领域的广泛应用,不但促进了科学和人类的进步,也使人们对数学有了新的认识:数学不仅仅是数学家的乐园,它特不应是抽象和枯燥的代名词,它是全人类的朋友,也是广大中小学生的朋友。教师在教学中结合数学的应用和解决问题的数学,要贯彻《数学课程标准》的理念,要注重渗透模型思想。小学数学教学过程中的建模策略有以下几点:

首先, 精选问题,巧设情境,培养建模兴趣。

数学是源于生活、寓于生活并用于生活的一门学科,每个数学模型都有着现实的“生活原型”.。“生活原型”是数学模型的构建基础,也是解决现实问题的需要.。在教学过程中,根据数学问题,巧妙地设置现实情境,通过这个现实的“生活原型”来引导学生以数学建模的方式解决问题.例如在教学“平均数”概念时,可以提出一个情境:8个男生和7个女生各为一组,进行演讲比赛,哪一组演讲的水平更高呢?学生们提出并讨论了一些比较方法,比如按每一组的最高分进行比较,或者按每一组的总成绩计算,这些方法都有着明显的不足之处,最终都被否定了,此时,提出按“平均数”进行比较的方法正是恰到好处.构建关于“平均数”的模型就成为了学生们解决问题的现实需求,这样一来,不仅让学生们直观深刻地理解了平均数概念及平均数模型的原型、条件、适用环境等,而且培养了学生们利用数学模型去解决实际问题的兴趣.。

其次,把握过程,抽象事物本质,实现模型完整构建。

要将数学模型渗透于数学教学中,就必须准确把握从现实的“生活原型”到抽象的数学模型的过渡过程.。设置生动具体的现实情境问题,只是数学建模教学的开始,这一现实原型仅仅给学生提供了进行模型构建的基础素材,在接下来的教学过程中,还需要对从具体事物向抽象模型跃进的过程有着准确把握,并进行有效组织,否则就不能实现成功的建模.。

要达到良好的教学效果,老师应当引导学生从对具体事物的感知上升到对抽象问题的认识和理解。

数学是一门“模型”的学科,数学模型是数学知识的核心内容,其作用当然也是数学应用的核心价值.在小学数学教学过程中,活用“数学模型”,将其渗透到实际教学环节中去,可以帮助学生更好地理解数学概念模型,深刻领会所学知识,顺利地建构数学知识体系,进而使得学生应用数学方法解决现实问题的能力显著增强,推动学生数学思维素质的稳步提升。

数学模型的构建,是为了解决实际的问题.而构建数学模型这一活动,本身就是一种对数学知识和现实背景的再创造。所以,在学生学习数学知识的过程中,老师要引导学生根据自身的实际体验及自己的思维方式来经历并体验这种“再创造”的整个过程,培养学生的数学模型思维和应用数学模型方法解决现实问题的能力。

下面就一教学片段来说一说:

教学片段

出示情境图。

师:谁来说一说第一幅图,你看到了什么?

生:从图中我看到了有5个小朋友在浇花。

师:第二幅图呢?

生:第二幅图中有2个小朋友去提水了,剩下3个小朋友。

师:你能把两幅图的意思连起来说吗?

生:有5个小朋友在浇花,走了2个,还剩下3个。

师:同学们观察得很仔细,也说得很好。你们能根据这两幅图的意思提一个数学问题吗?

生:有5个小朋友在浇花,走了2个,还剩几个?

生(齐):3个。

师:对,大家能不能用圆片代替小朋友,将这一过程摆一摆呢?

(教师在行间指导学生摆圆片,并请一生将圆片摆在情境图的下面。)

师:(结合情境图和圆片说明)5个小朋友在浇花,走了2个,还剩3个;从5个圆片中拿走2个,还剩3个,都可以用同一个算式(学生齐接话:5-2=3)来表示。(在圆片下板书:5-2=3)

生齐读:5减2等于3。

师:谁来说一说这里的5表示什么?2、3又表示什么呢?

……

师:同学们说得真好!在生活中存在着许许多多这样的数学问题,5-2=3还可以表示什么呢?请同桌互相说一说。

生1:有5瓶牛奶,喝掉2瓶,还剩3瓶。

生2:树上有5只小鸟,飞走2只,还剩3只。

……

除了教学充分展开外,更主要的是渗透了初步的数学建模思想,训练的是学生抽象、概括、举一反三的学习能力。且这种训练并不是简单、生硬地进行,而是和低年级学生数学学习的特点相贴切——由具体、形象的实例开始,借助于操作予以内化和强化,最后通过思维发散和联想加以扩展和推广,赋予“5-2=3”以更多的“模型”意义。

1.在小学数学教学中渗透数学思想方法的途径(1)备课:研读教材、明确目标、设计预案,挖掘数学思想方法 “凡事预则立,不预则废”.如果课前教师对教材内容的教学适合渗透哪些思想方法一无所知,那么课堂教学就不可能有的放矢.受篇幅的限制,教材内容较多显示的是数学结论,对数学结论里面所隐含的数学思想方法以及数学思维活动的过程,并没有在教材里明显地体现.因此教师在备课时,不应只见直接写在教材上的数学基础知识与技能,而是要进一步钻研教材,创造性地使用教材,挖掘隐含在教材中的数学思想方法,并在教学目标中明确写出渗透哪些数学思想方法,并设计数学活动落实在教学预设的各个环节中,实现数学思想方法有机地融合在数学知识的形成过程中,使教材呈现的知识技能这条明线与隐含的思想方法的暗线同时延展.为此,教师在研读教材时,要多问自己几个为什么,将教材的编排思想内化为自己的教学思想,如:怎样让学生经历知识的产生与发展的过程?怎么样才能唤起学生进行深层次的数学思考?如何激发学生主动探究新知识的积极性?如何依据教材适时地渗透数学思想方法等等,教师只有做到胸有成竹,方能有的放矢.例如在备“歌手大赛(小数加减法)”一课中,呈现了歌手比赛的情境(如图),教材呈现的算法是:9.43-(8.65+0.40).但备课组在分析教材时没有局限于这种解法,而是挖掘出几种不同解法,明确其中的数学思想方法,并预设了画线段图、小组讨论、交流的活动.新增解法有解法二:9.43-8.65-0.40,应用了假设的思想方法.解法三:将8.65-8.55=0.10,0.88-0.40=0.48,0.48-0.10=0.38,应用了对应的思想方法.解法四:8.65-8.55=0.10,就从0.88-0.10=0.78,再0.78-0.40=0.38,应用了等量变换的思想,采用了移多补少的方法.(2)上课:创设情境、建立模型、解释应用,渗透数学思想方法数学是知识与思想方法的有机结合,没有不包含数学思想方法的数学知识,也没有游离于数学知识之外的数学思想方法.这就要求教师在课堂教学中,在揭示数学知识的形成过程中渗透数学思想方法,在教给学生数学知识的同时,也获得数学思想方法上的点化.教师积极地在课堂中渗透数学思想方法,体现了教师在教学中的大智慧,也为学生的学习开辟了一个广阔的新天地.不同的教学内容,不同的课型,可据其不同特点,恰当地渗透数学思想方法.以下面三种课型为例.①新授课:探索知识的发生与形成,渗透数学思想方法数学知识发生、形成、发展的过程也是其思想方法产生、应用的过程.在此过程中,向学生提供丰富的、典型的、正确的直观背景材料,采取“问题情境—建立模型—解释、应用与拓展”的模式,通过实际问题的研究,了解数学知识产生的背景,再现数学形成的过程,揭示知识发展的前景,渗透数学思想,发展学生的思维能力,使学生在掌握数学知识技能的同时,即学会数学概念、公式、定理、法则等的过程中,深入到数学的“灵魂深处”,真正领略数学的精髓——数学思想方法.比如在质数、合数的概念教学中让学生用小正方形拼长方形,把质数、合数的概念潜藏在图形操作(如右图),明白“质数个”小正方形只能拼成一个长方形,而“合数个”小正方形至少能拼成两个不同形状的长方形(含正方形),渗透数形结合的思想,再通过给这些数分类,引入质数、合数的概念,渗透分类思想.又如在《三角形分类》一课中,教师给学生提供了三角形学具先放手让学生在小组合作中尝试对三角形进行分类,学生从关注三角形的角与边的特征入手,借助学具看一看、比一比、量一量、分一分、想一想,寻找特征、抽象共性,在比较中将具有相同特征的三角形归为一类,在分类中抽象出图形的共同特征.这样的教学,学生经历了三角形分类的过程,渗透了分类、集合的思想,丰富了分类活动的经验,形成分类的基本策略,发展了归纳能力.②练习课:经历知识的巩固与应用,渗透数学思想方法数学知识的巩固,技能的形成,智力的开发,能力的培养等需要适量的练习才能实现.练习课的练习不同于新授课的练习,新授课中的练习主要是为了巩固刚学过的新知,习题侧重于知识方面;而练习课中的练习则是为了在形成技能的基础上向能力转化,提高学生运用知识解决实际问题的能力,发展学生的思维能力.因此教师要有数学思想方法教学意识,在练习课的教学中不仅要有具体知识、技能训练的要求,而且要有明确的数学思想方法的教学要求.例如在《6的乘法口诀》练习课中,学生在完成想一想、算一算的练习中,先让学生计算,再通过交流自己的算法,以“7×6+6”为例,借助用课件演示来理解式子的意义,运用数形结合启发将式子转化为8×6来计算,渗透变换的思想,懂得两个式子形式虽不同,表示的意义以及结果是相同的.又如让学生算一算每个图中各有多少个格子,之后教师要启发学生怎样将图形转化成同第一个图形那样的图形,可以直接用口诀计算?学生通过实际操作,动手剪一剪、拼一拼,转化成长方形后分别用6×3、4×3来计算,从而感受到转化思想的魅力.“咱们要教给孩子们什么?”“数学的学习主要是学习思想和方法以及解题的策略”,因此我们要在练习的过程中不断地总结和探索,从中寻找共性,呈现给孩子最有价值、最本质的东西——数学思想方法.③复习课:学会知识的整理与复习,强化数学思想方法复习有别于新知识的教学.它是在学生基本掌握了一定的数学知识体系、具备了一定的解题经验,学生基本认识了某些数学思想方法的基础上的复习数学.数学思想方法总是隐含在数学知识中,它与具体的数学知识结合成一个有机整体,但它却无法像数学知识那样编为章节来教学,而是渗透于全部的小学数学知识中.不同章节的数学知识往往蕴含着不同的数学思想方法,有时在一章或一单元的教学中,又涉及很多的数学思想方法.因此教师在上复习课前,教师要能总体把握教材中隐含的思想方法,明确前后知识间的联系,做到“瞻前顾后”,并把数学思想方法的渗透落实到教学计划中.复习时,除了帮助学生掌握好知识与技能,形成良好的认知结构外,还必须加强数学思想方法的渗透,适时地对某种数学思想方法进行揭示、概括和强化,对它的名称、内容及其运用等予以点拨,使学生从数学思想方法的高度把握知识的本质和内在的规律,逐步体会数学思想方法的价值.如在复习多边形的面积推导时,教师可引导学生思考:平行四边形、三角形、梯形的面积计算公式各是怎样推导的?有什么共同点?让学生提炼概括:学习平行四边形面积计算时,我们应用割补法把它转化成学过的长方形来推导;学习三角形和梯形的面积计算时,我们用两个完全相同的图形来拼合或把一个图形割补转化成学过的图形来推导……经过系列概括提炼,学生得出其中重要的思想方法——转化思想.学生一旦掌握了数学思想方法,不仅能使学生的知识结构更完善,还特别有助于今后的学习和运用.因为掌握了数学的思想方法,学生面对新的问题时将懂得怎样去思考,真正实现质的“飞跃”.(3)作业:掌握知识、形成技能、发展智力,应用数学思想方法精心设计作业也是渗透数学思想方法的一条途径.把作业设计好,设计一些蕴含数学思想方法的题目,采取有效的练习方式,既巩固了知识技能,又有机地渗透了数学思想方法,一举两得.为此教师布置作业要有讲究,在学生作业后,要不失时机地恰当地点评,让学生不仅巩固所学知识、习得解题技能,更重要的是能悟出其中的数学规律、数学思想方法.再如一位六年级老师布置了下面这道课后思考题.+=++=+++=++++=……++++++……=在作业讲评中,教师不仅要给出答案,更重要的是启发学生思考:你是怎样算的?是怎么想的?其中运用了什么思想方法?结合上图引导学生概括出其中的思想与方法:类比思想、数学建模思想、极限的思想、数形结合的思想.(4)课外:培养兴趣、增长见识、培养能力,提升数学思想方法学校开展数学课外活动是课内教学的重要补充.根据学生的学习水平在年段里开设有关数学思想方法内容的讲座,如果平时教学中的数学思想方法的点滴渗透是“美味点心”的话,那么专题讲座对学生来说就是“丰盛大餐”了,学生比较系统地了解了常见的数学思想方法以及应用,拓展学生的眼界;数学思想方法的渗透和数学课外实践活动相结合可以使二者相得益彰,定期开展数学实践活动可以发展学生的动手实践能力和创新意识,发展学生应用数学思想方法解决问题的能力;定期开展数学智力竞赛,不但激发优生学习数学的积极性,也考察学生掌握数学思想方法的情况;学生编数学小报、出板报等活动,可以增长学生见识,了解较多相关知识.形式多样的数学课外活动,使数学思想方法潜移默化,引导学生在学与用中提升了对数学思想方法的认识.

关于“在小学数学的数与代数的教学中,如何渗透数学思想方法?”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!

本文来自作者[傲蕾]投稿,不代表育友号立场,如若转载,请注明出处:https://jxydedu.cn/zlan/202602-21651.html

(10)

文章推荐

  • 煎饼摊主月入过万每天工作多少小时?

    网上有关“煎饼摊主月入过万每天工作多少小时?”话题很是火热,小编也是针对煎饼摊主月入过万每天工作多少小时?寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。“我月入3万,怎么会少你一个鸡蛋!”在北京,一位煎饼摊大妈和顾客争执时脱口而出的一句话意外走红。然而早餐摊

    2025年12月06日
    82308
  • 判断电路状态的方法初三物理

    网上有关“判断电路状态的方法初三物理”话题很是火热,小编也是针对判断电路状态的方法初三物理寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。用电器不能正常工作,就表明出现了问题,一般有下列几种状况:(1)断路——①如果是串联电路的某部分发生断路,现象一定是小灯

    2025年12月07日
    84320
  • 使用电推剪要注意什么

    网上有关“使用电推剪要注意什么”话题很是火热,小编也是针对使用电推剪要注意什么寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。摘要:剪男发的时候,一般都会用到电推剪,也就是轧剪。用电推剪理发还是有一定的技巧,操作时时右手拇指与食指握住推子中上部两旁,其余三指握

    2025年12月11日
    83316
  • 深圳社保卡丢了怎么补办

    网上有关“深圳社保卡丢了怎么补办”话题很是火热,小编也是针对深圳社保卡丢了怎么补办寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。法律主观:社保卡丢失怎么补办持卡人的社会保障卡遗失后,可拨打社会保障卡服务热线“96102”(24小时服务)进行电话预挂失。也可持

    2025年12月11日
    99317
  • 景德镇市有多少个乡镇.一一列出来

    网上有关“景德镇市有多少个乡镇.一一列出来”话题很是火热,小编也是针对景德镇市有多少个乡镇.一一列出来寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。2019年,景德镇市下辖2个市辖区、1个县级市、1个县;有39个乡镇。珠山区:下辖9个街道、1个镇:石狮埠街道

    2025年12月17日
    84321
  • 学习太极拳的三个步骤

    网上有关“学习太极拳的三个步骤”话题很是火热,小编也是针对学习太极拳的三个步骤寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。学习太极拳的三个步骤有打基础、“搭架子”、练劲力,具体如下:1、打基础:初学太极拳,首先要学“三项基本功”,打好基础。“三项基本功”是

    2025年12月19日
    79308
  • 真实辅助“手机打牌系统怎么才会给发好牌”详细开挂玩法

    >亲,这款游戏原来确实可以开挂,详细开挂教程1、起手看牌2、随意选牌3、控制牌型4、注明,就是全场,公司软件防封号、防检测、 正版软件、非诚勿扰。2022首推。全网独家,诚信可靠,无效果全额退款,本司推出的多功能作 弊辅助软件。软件提

    2025年12月23日
    64316
  • 玩家辅助神器:“微乐怎么让系统给你发好牌”最新辅助详细教程

    ˂pstyle="font-size:16px;font-family:-apple-system,BlinkMacSystemFont,"vertical-align:baseline;font-weight:400;color:#1A1A1A;font-style

    2025年12月25日
    127308
  • 实测分享“微乐陕西挖坑开挂教程”(详细开挂教程)

    ˂pstyle="font-size:16px;font-family:-apple-system,BlinkMacSystemFont,"vertical-align:baseline;font-weight:400;color:#1A1A1A;font-style

    2026年01月04日
    66322
  • 辅助开挂工具“七千在线十三道提高好牌几率”开挂详细教程

    >亲,这款游戏原来确实可以开挂,详细开挂教程1、起手看牌2、随意选牌3、控制牌型4、注明,就是全场,公司软件防封号、防检测、 正版软件、非诚勿扰。2022首推。全网独家,诚信可靠,无效果全额退款,本司推出的多功能作 弊辅助软件。软件提

    2026年01月06日
    56305
  • 玩家辅助神器“微乐麻将小程序必赢神器亮点”其实确实有挂

    您好:,软件加微信【添加图中QQ群】确实是有挂的,很多玩家在这款游戏中打牌都会发现很多用户的牌特别好,总是好牌,而且好像能看到其他人的牌一样。所以很多小伙伴就怀疑这款游戏是不是有挂,实际上这款游戏确实是有挂的,添加客服微信【添加图中QQ群】安装软件.1、起手看牌2、随意

    2026年02月02日
    26310
  • 实测分享“微乐福建麻将跑得快怎么开挂”必胜开挂神器

    您好:,软件加微信【添加图中QQ群】确实是有挂的,很多玩家在这款游戏中打牌都会发现很多用户的牌特别好,总是好牌,而且好像能看到其他人的牌一样。所以很多小伙伴就怀疑这款游戏是不是有挂,实际上这款游戏确实是有挂的,添加客服微信【添加图中QQ群】安装软件.1、起手看牌2、随意选牌

    2026年02月08日
    7321

发表回复

本站作者才能评论

评论列表(3条)

  • 傲蕾的头像
    傲蕾 2026年02月05日

    我是育友号的签约作者“傲蕾”

  • 傲蕾
    傲蕾 2026年02月05日

    本文概览:网上有关“在小学数学的数与代数的教学中,如何渗透数学思想方法?”话题很是火热,小编也是针对在小学数学的数与代数的教学中,如何渗透数学思想方法?寻找了一些与之相关的一些信息进行分...

  • 傲蕾
    用户020506 2026年02月05日

    文章不错《在小学数学的数与代数的教学中,如何渗透数学思想方法-》内容很有帮助