六年级上册数学知识点有多少

网上有关“六年级上册数学知识点有多少”话题很是火热,小编也是针对六年级上册数学知识点有多少寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。

六年级上册数学知识点整理归纳

第一单元 位置

1、什么是数对?

——数对:由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右为列数和行数,即“先列后行”。

作用:确定一个点的位置。经度和纬度就是这个原理。

例:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行)。

注:(1)在平面直角坐标系中X轴上的坐标表示列,y轴上的坐标表示行。如:数对(3,2)表示第三列,第二行。

(2)数对(X,5)的行号不变,表示一条横线,(5,Y)的列号不变,表示一条竖线。(有一个数不确定,不能确定一个点)

( 列 , 行 )

↓ ↓

竖排叫列 横排叫行

(从左往右看)(从下往上看)

(从前往后看)

2、图形左右平移行数不变;图形上下平移列数不变。

3、两点间的距离与基准点(0,0)的选择无关,基准点不同导致数对不同,两点间但距离不变。

第二单元 分数乘法

(一)分数乘法意义:

1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

注:“分数乘整数”指的是第二个因数必须是整数,不能是分数。

例如: ×7表示: 求7个 的和是多少? 或表示: 的7倍是多少?

2、一个数乘分数的意义就是求一个数的几分之几是多少。

注:“一个数乘分数”指的是第二个因数必须是分数,不能是整数。(第一个因数是什么都可以)

例如: × 表示: 求 的 是多少?

9 × 表示: 求9的 是多少?

A × 表示: 求a的 是多少?

(二)分数乘法计算法则:

1、分数乘整数的运算法则是:分子与整数相乘,分母不变。

注:(1)为了计算简便能约分的可先约分再计算。(整数和分母约分)

(2)约分是用整数和下面的分母约掉最大公因数。(整数千万不能与分母相乘,计算结果必须是最简分数)

2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。(分子乘分子,分母乘分母)

注:(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。

(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。

(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)

(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。

(三)积与因数的关系:

一个数(0除外)乘大于1的数,积大于这个数。a×b=c,当b >1时,c>a.

一个数(0除外)乘小于1的数,积小于这个数。a×b=c,当b <1时,c

一个数(0除外)乘等于1的数,积等于这个数。a×b=c,当b =1时,c=a .

注:在进行因数与积的大小比较时,要注意因数为0时的特殊情况。

附:形如 的分数可折成( )×

(四)分数乘法混合运算

1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。

2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。

乘法交换律:a×b=b×a

乘法结合律:(a×b)×c=a×(b×c)

乘法分配律:a×(b±c)=a×b±a×c

(五)倒数的意义:乘积为1的两个数互为倒数。

1、倒数是两个数的关系,它们互相依存,不能单独存在。单独一个数不能称为倒数。(必须说清谁是谁的倒数)

2、判断两个数是否互为倒数的唯一标准是:两数相乘的积是否为“1”。

例如:a×b=1则a、b互为倒数。

3、求倒数的方法:

①求分数的倒数:交换分子、分母的位置。

②求整数的倒数:整数分之1。

③求带分数的倒数:先化成假分数,再求倒数。

④求小数的倒数:先化成分数再求倒数。

4、1的倒数是它本身,因为1×1=1

0没有倒数,因为任何数乘0积都是0,且0不能作分母。

5、任意数a(a≠0),它的倒数为 ;非零整数a的倒数为 ;分数 的倒数是 。

6、真分数的倒数是假分数,真分数的倒数大于1,也大于它本身。

假分数的倒数小于或等于1。

带分数的倒数小于1。

(六)分数乘法应用题 ——用分数乘法解决问题

1、求一个数的几分之几是多少?(用乘法)

“1”× =

例如:求25的 是多少? 列式:25× =15

甲数的 等于乙数,已知甲数是25,求乙数是多少? 列式:25× =15

注:已知单位“1”的量,求单位“1”的量的几分之几是多少,用单位“1”的量与分数相乘。

2、( 什么)是(什么 )的 。

( )= ( “1” ) ×

例1: 已知甲数是乙数的 ,乙数是25,求甲数是多少?

甲数=乙数× 即25× =15

注:(1)“是”“的”字中间的量“乙数”是 的单位“1”的量,即 是把乙数看作单位“1”,把乙数平均分成5份,甲数是其中的3份。

(2)“是”“占”“比”这三个字都相当于“=”号,“的”字相当于“×”。

(3)单位“1”的量×分率=分率对应的量

例2:甲数比乙数多(少) ,乙数是25,求甲数是多少?

甲数=乙数 ± 乙数× 即25±25× =25×(1± )=40(或10)

3、巧找单位“1”的量:在含有分数(分率)的语句中,分率前面的量就是单位“1”对应的量,或者“占”“是”“比”字后面的量是单位“1”。

4、什么是速度?

——速度是单位时间内行驶的路程。速度=路程÷时间 时间=路程÷速度 路程=速度×时间

——单位时间指的是1小时1分钟1秒等这样的大小为1的时间单位,每分钟、每小时、每秒钟等。

5、求甲比乙多(少)几分之几?

多:(甲-乙)÷乙

少:(乙-甲)÷乙

第三单元 分数除法

一、分数除法的意义:分数除法是分数乘法的逆运算,已知两个数的积与其中一个因数,求另一个因数的运算。

二、分数除法计算法则:除以一个数(0除外),等于乘上这个数的倒数。

1、被除数÷除数=被除数×除数的倒数。例 ÷3= × = 3÷ =3× =5

2、除法转化成乘法时,被除数一定不能变,“÷”变成“×”,除数变成它的倒数。

3、分数除法算式中出现小数、带分数时要先化成分数、假分数再计算。

4、被除数与商的变化规律:

①除以大于1的数,商小于被除数:a÷b=c 当b>1时,c

②除以小于1的数,商大于被除数:a÷b=c 当b<1时,c>a (a≠0 b≠0)

③除以等于1的数,商等于被除数:a÷b=c 当b=1时,c=a

三、分数除法混合运算

1、混合运算用梯等式计算,等号写在第一个数字的左下角。

2、运算顺序:

①连除:属同级运算,按照从左往右的顺序进行计算;或者先把所有除法转化成乘法再计算;或者依据“除以几个数,等于乘上这几个数的积”的简便方法计算。加、减法为一级运算,乘、除法为二级运算。

②混合运算:没有括号的先乘、除后加、减,有括号的先算括号里面,再算括号外面。

注:(a±b)÷c=a÷c±b÷c

四、比:两个数相除也叫两个数的比

1、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。

注:连比如:3:4:5读作:3比4比5

2、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几。

例:12∶20= =12÷20= =0.6 12∶20读作:12比20

注:区分比和比值:比值是一个数,通常用分数表示,也可以是整数、小数。

比是一个式子,表示两个数的关系,可以写成比,也可以写成分数的形式。

3、比的基本性质:比的前项和后项同时乘以或除以相同的数(0除外),比值不变。

3、化简比:化简之后结果还是一个比,不是一个数。

(1)、 用比的前项和后项同时除以它们的最大公约数。

(2)、 两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。也可以求出比值再写成比的形式。

(3)、 两个小数的比,向右移动小数点的位置,也是先化成整数比。

4、求比值:把比号写成除号再计算,结果是一个数(或分数),相当于商,不是比。

5、比和除法、分数的区别:

除法 被除数 除号(÷) 除数(不能为0) 商不变性质 除法是一种运算

分数 分子 分数线(——) 分母(不能为0) 分数的基本性质 分数是一个数

比 前项 比号(∶) 后项(不能为0) 比的基本性质 比表示两个数的关系

附:商不变性质:被除数和除数同时乘或除以相同的数(0除外),商不变。

分数的基本性质:分子和分母同时乘或除以相同的数(0除外),分数的大小不变。

五、分数除法和比的应用

1、已知单位“1”的量用乘法。例:甲是乙的 ,乙是25,求甲是多少?即:甲=乙× (15× =9)

2、未知单位“1”的量用除法。例: 甲是乙的 ,甲是15,求乙是多少?即:甲=乙× (15÷ =25)(建议列方程答)

3、分数应用题基本数量关系(把分数看成比)

(1)甲是乙的几分之几?

甲=乙×几分之几 (例:甲是15的 ,求甲是多少?15× =9)

乙=甲÷几分之几 (例:9是乙的 ,求乙是多少?9÷ =15)

几分之几=甲÷乙 (例:9是15的几分之几?9÷15= )(“是”字相当“÷”号,乙是单位“1”)

(2)甲比乙多(少)几分之几?

A 差÷乙= (“比”字后面的量是单位“1”的量)(例:9比15少几分之几?(15-9)÷15= = = )

B 多几分之几是: –1 (例: 15比9少几分之几?15÷9= -1= –1= )

C 少几分之几是:1– (例:9比15少几分之几?1-9÷15=1– =1– = )

D 甲=乙±差=乙±乙× =乙±乙× =乙(1± ) (例:甲比15少 ,求甲是多少?15–15× =15×(1– )=9(多是“+”少是“–”)

E 乙=甲÷(1± )(例:9比乙少 ,求乙是多少?9÷(1- )=9 ÷ =15)(多是“+”少是“–”)

(例:15比乙多 ,求乙是多少?15÷(1+ )=15 ÷ =9)(多是“+”少是“–”)

4、按比例分配:把一个量按一定的比分配的方法叫做按比例分配。

例如:已知甲乙的和是56,甲、乙的比3∶5,求甲、乙分别是多少?

方法一:56÷(3+5)=7 甲:3×7=21 乙:5×7=35

方法二:甲:56× =21 乙:56× =35

例如:已知甲是21,甲、乙的比3∶5,求乙是多少?

方法一:21÷3=7 乙:5×7=35

方法二:甲乙的和21÷ =56 乙:56× =35

方法二:甲÷乙= 乙=甲÷ =21÷ =35

5、画线段图:

(1)找出单位“1”的量,先画出单位“1”,标出已知和未知。

(2)分析数量关系。

(3)找等量关系。

(4)列方程。

注:两个量的关系画两条线段图,部分和整体的关系画一条线段图。

第四单元 圆

一、.圆的特征

1、圆是平面内封闭曲线围成的平面图形,.

2、圆的特征:外形美观,易滚动。

3、圆心o:圆中心的点叫做圆心.圆心一般用字母O表示.圆多次对折之后,折痕的相交于圆的中心即圆心。圆心确定圆的位置。

半径r:连接圆心到圆上任意一点的线段叫做半径。在同一个圆里,有无数条半径,且所有的半径都相等。半径确定圆的大小。

直径d: 通过圆心且两端都在圆上的线段叫做直径。在同一个圆里,有无数条直径,且所有的直径都相等。直径是圆内最长的线段。

同圆或等圆内直径是半径的2倍:d=2r 或 r=d÷2= d=

4、等圆:半径相等的圆叫做同心圆,等圆通过平移可以完全重合。

同心圆:圆心重合、半径不等的两个圆叫做同心圆。

5、圆是轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的直线叫做对称轴。

有一条对称轴的图形:半圆、扇形、等腰梯形、等腰三角形、角

有二条对称轴的图形:长方形

有三条对称轴的图形:等边三角形

有四条对称轴的图形:正方形

有无条对称轴的图形:圆,圆环

6、画圆

(1)圆规两脚间的距离是圆的半径。

(2)画圆步骤:定半径、定圆心、旋转一周。

二、圆的周长:围成圆的曲线的长度叫做圆的周长,周长用字母C表示。

1、圆的周长总是直径的三倍多一些。

2、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。

即:圆周率π= =周长÷直径≈3.14

所以,圆的周长(c)=直径(d)×圆周率(π) ——周长公式: c=πd, c=2πr

注:圆周率π是一个无限不循环小数,3.14是近似值。

3、周长的变化的规律:半径扩大多少倍直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数相同。

如果r1∶r2∶r3=d1∶d2∶d3=c1∶c2∶c3

4、半圆周长=圆周长一半+直径= ×2πr=πr+d

三、圆的面积s

1、圆面积公式的推导

如图把一个圆沿直径等分成若干份,剪开拼成长方形,份数越多拼成的图像越接近长方形。

圆的半径 = 长方形的宽

圆的周长的一半 = 长方形的长

长方形面积 = 长 ×宽

所以:圆的面积 = 长方形的面积 = 长 ×宽 = 圆的周长的一半(πr)×圆的半径(r)

S圆 = πr × r

S圆 = πr×r = πr2

2、几种图形,在面积相等的情况下,圆的周长最短,而长方形的周长最长;反之,在周长相等的情况下,圆的面积则最大,而长方形的面积则最小。

周长相同时,圆面积最大,利用这一特点,篮子、盘子做成圆形。

3、圆面积的变化的规律:半径扩大多少倍直径、周长也同时扩大多少倍,圆面积扩大的倍数是半径、直径扩大的倍数的平方倍。

如果: r1∶r2∶r3=d1∶d2∶d3=c1∶c2∶c3=2∶3∶4

则:S1∶S2∶S3=4∶9∶16

4、环形面积 = 大圆 – 小圆=πr大2 - πr小2=π(r大2 - r小2)

扇形面积 = πr2× (n表示扇形圆心角的度数)

5、跑道:每条跑道的周长等于两半圆跑道合成的圆的周长加上两条直跑道的和。因为两条直跑道长度相等,所以,起跑线不同,相邻两条跑道起跑线也不同,间隔的距离是:2×π×跑道宽度。

注:一个圆的半径增加a厘米,周长就增加2πa厘米

一个圆的直径增加b厘米,周长就增加πb 厘米

6、任意一个正方形的内切圆即最大圆的直径是正方形的边长,它们的面积比是4∶π

7、常用数据

π=3.14 2π=6.28 3π=9.42 4π=12.56 5π=15.7

第五单元、百分数

一、百分数的意义:表示一个数是另一个数的百分之几。

注:百分数是专门用来表示一种特殊的倍比关系的,表示两个数的比,所以,百分数又叫百分比或百分率,百分数不能带单位。

1、百分数和分数的区别和联系:

(1)联系:都可以用来表示两个量的倍比关系。

(2)区别:意义不同:百分数只表示倍比关系,不表示具体数量,所以不能带单位。分数不仅表示倍比关系,还能带单位表示具体数量。

百分数的分子可以是小数,分数的分子只以是整数。

注:百分数在生活中应用广泛,所涉及问题基本和分数问题相同,分母是100的分数并不是百分数,必须把分母写成“%”才是百分数,所以“分母是100的分数就是百分数”这句话是错误的。“%”的两个0要小写,不要与百分数前面的数混淆。一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。一般出粉率在70、80%,出油率在30、40%。

2、小数、分数、百分数之间的互化

(1)百分数化小数:小数点向左移动两位,去掉“%”。

(2)小数化百分数:小数点向右移动两位,添上“%”。

(3)百分数化分数:先把百分数写成分母是100的分数,然后再化简成最简分数。

(4)分数化百分数:分子除以分母得到小数,(除不尽的保留三位小数)然后化成百分数。

(5)小数 化 分数:把小数成分母是10、100、1000等的分数再化简。

(6)分数 化 小数:分子除以分母。

二、百分数应用题

1、 求常见的百分率 如:达标率、及格率、成活率、发芽率、出勤率等求百分率就是求一个数是另一个数的百分之几

2、 求一个数比另一个数多(或少)百分之几,实际生活中,人们常用增加了百分之几、减少了百分之几、节约了百分之几等来表示增加、或减少的幅度。

求甲比乙多百分之几 (甲-乙)÷乙

求乙比甲少百分之几 (甲-乙)÷甲

3、 求一个数的百分之几是多少 一个数(单位“1”) ×百分率

4、 已知一个数的百分之几是多少,求这个数 部分量÷百分率=一个数(单位“1”)

5、 折扣 折扣、打折的意义:几折就是十分之几也就是百分之几十

折扣 成数 几分之几 百分之几 小数 通用

八折 八成 十分之八 百分之八十 0.8

八五折 八成五 十分之八点五 百分之八十五 0.85

五折 五成 十分之五 百分之五十 0.5 半价

6、 纳税 缴纳的税款叫做应纳税额。

(应纳税额)÷(总收入)=(税率)

(应纳税额)=(总收入)×(税率)

7、 利率

(1)存入银行的钱叫做本金。

(2)取款时银行多支付的钱叫做利息。

(3)利息与本金的比值叫做利率。

利息=本金×利率×时间

税后利息=利息-利息的应纳税额=利息-利息×5%

注:国债和教育储蓄的利息不纳税

8、百分数应用题型分类

(1)求甲是乙的百分之几——(甲÷乙)×100% = ×100% = 百分之几

(2)求甲比乙多(少)百分之几—— ×100% = ×100%

① 甲是50,乙是40,甲是乙的百分之几?(50是40的百分之几?)50÷40=125%

② 甲是50,乙是40,乙是甲的百分之几?(40是50的百分之几?)40÷50=80%

③ 乙是40,甲是乙的125%,甲数是多少?(40的125%是多少?)40×125%=50

④ 甲是50,乙是甲的80%,乙数是多少?(50的80%是多少?)50×80%=40

⑤ 乙是40,乙是甲的80%,甲数是多少?(一个数的80%是40,这个数是多少?)40÷80%=50

⑥ 甲是50,甲是乙的125%,乙数是多少?(一个数的125%是50,这个数是多少?)50÷125%=40

⑦ 甲是50,乙是40,甲比乙多百分之几?(50比40多百分之几?)(50-40)÷40×100%=25%

⑧ 甲是50,乙是40,乙比甲少百分之几?(40比50少百分之几?)(50-40)÷50×100%=20%

⑨ 甲比乙多25%,多10,乙是多少?10÷25%=40

⑩ 甲比乙多25%,多10,甲是多少?10÷25%+10=50

? 乙比甲少20%,少10,甲是多少?10÷20%=50

? 乙比甲少20%,少10,乙是多少?10÷20%-10=40

? 乙是40,甲比乙多25%,甲数是多少?(什么数比40多25%?)40×(1+25%)=50

? 甲是50,乙比甲少20%,乙数是多少?(什么数比50多25%?)50×(1-20%)=40

? 乙是40,比甲少20%,甲数是多少?(40比什么数少20%?)40÷(1-20%)=50

? 甲是50,比乙多25%,乙数是多少?(50比什么数多25%?)40÷(1+25%)=40

第六单元、统计

1、 扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间关系,也就是各部分数量占总数的百分比,因此也叫百分比图。

2、 常用统计图的优点:

(1)、条形统计图直观显示每个数量的多少。

(2)、折线统计图不仅直观显示数量的增减变化,还可清晰看出各个数量的多少。

(3)、扇形统计图直观显示部分和总量的关系。

第七单元、数学广角

一、研究中国古代的鸡兔同笼问题。

1、 用表格方式解决有局限性,数目必须小,例:

头数 鸡(只)兔(只) 腿数

35 1 34

35 2 33

35 3 32

……

(逐一列表法、腿数少,小幅度跳跃;腿数多,大幅度跳跃。跳跃逐一相结合、取中列表)

2、 用假设法解决

(1) 假如都是兔

(2) 假如都是鸡

(3) 假如它们各抬起一条腿

(4) 假如兔子抬起两条前腿

3、 用代数方法解(一般规律)

注释:这个问题,是我国古代著名趣题之一。大约在1500年前,《孙子算经》中就记载了这个有趣的问题。书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。求笼中各有几只鸡和兔?

二、和尚分馒头

100个和尚吃100个馒头,大和尚一人吃3个,小和尚三人吃一个。大小和尚各多少人?

国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:

一百馒头一百僧,

大僧三个更无争,

小僧三人分一个,

大小和尚各几丁?"

如果译成白话文,其意思是:有100个和尚分100只馒头,正好分完。如果大和尚一人分3只,小和尚3人分一只,试问大、小和尚各有几人?

方法一,用方程解:

解:设大和尚有x人,则小和尚有(100-x)人,根据题意列得方程:

3x + (100-x)=100

x=25

100-25=75人

方法二,鸡兔同笼法:

(1)假设100人全是大和尚,应吃馒头多少个?

3×100=300(个).

(2)这样多吃了几个呢?

300-100=200(个).

(3)为什么多吃了200个呢?这是因为把小和尚当成大和尚。那么把小和尚当成大和尚时,每个小和尚多算了几个馒头?

3- = (个)

(4)每个小和尚多算了8/3个馒头,一共多算了200个,所以小和尚有:

小和尚:200÷ =75(人)

大和尚:100-75=25(人)

方法三,分组法:

由于大和尚一人分3只馒头,小和尚3人分一只馒头。我们可以把3个小和尚与1个大和尚编为一组,这样每组4个和尚刚好分4个馒头,那么100个和尚总共分为100÷(3+1)=25组,因为每组有1个大和尚,所以有25个大和尚;又因为每组有3个小和尚,所以有25×3=75个小和尚。

这是《直指算法统宗》里的解法,原话是:"置僧一百为实,以三一并得四为法除之,得大僧二十五个。"所谓"实"便是"被除数","法"便是"除数"。列式就是:

100÷(3+1)=25(组)

大和尚:25×1=25(人)

小和尚:100-25=75(人)或25×3=75(人)

我国古代劳动人民的智慧由此可见一斑。

三、整数、分数、百分数应用题结构类型

(一)求甲是乙的几倍(或几分之几或百分之几)的应用题。

解法:甲数除以乙数

例:校园里有杨树40棵,柳树有50棵,杨树的棵树占柳树的百分之几?(或几分之几?)

(二)求甲数的几倍(或几分之几或百分之几)是多少的应用题。

解答分数应用题,首先要确定单位“1”,在单位“1”确定以后,一个具体数量总与一个具体分数(分率)相对应,这种关系叫“量率对应”,这是解答分数应用题的关键。

求一个数的几倍(几分之几或百分之几)是多少用乘法,单位“1”×分率=对应数量

例:六年级有学生180人,五年级的学生人数是六年级人数的56 。五年级有学生多少人?

180×56 =150

(三)已知甲数的几倍(或几分之几或百分之几)是多少,求甲数(即求标准量或单位“1”)的应用题。

解法:对应数量÷对应分率=单位“1”

例:育红小学六年级男生有120人,占参加兴趣活动小组人数的35 . 六年级参加兴趣活动小组人数共有学生多少人?

120÷35 =200(人)

小学六年级最易考的数学题型汇总

只有学习精彩,生命才精彩,只有学习成功,事业才成功。每一门科目都有自己的 学习 方法 ,数学作为最烧脑的科目之一,需要不断的练习。下面是我给大家整理的一些 六年级数学 的知识点,希望对大家有所帮助。

人教版小学六年级上册数学知识点

第一单元:分数乘法

(一)分数乘法意义:

1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

“分数乘整数”指的是第二个因数必须是整数,不能是分数。

2、一个数乘分数的意义就是求一个数的几分之几是多少。

“一个数乘分数”指的是第二个因数必须是分数,不能是整数。(第一个因数是什么都可以)

(二)分数乘法计算法则:

1、分数乘整数的运算法则是:分子与整数相乘,分母不变。

(1)为了计算简便能约分的可先约分再计算。(整数和分母约分)(2)约分是用整数和下面的分母约掉公因数。(整数千万不能与分母相乘,计算结果必须是最简分数)。

2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。(分子乘分子,分母乘分母)

(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。

(2)分数化简的方法是:分子、分母同时除以它们的公因数。

(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。

(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。

(三)积与因数的关系:

一个数(0除外)乘大于1的数,积大于这个数。a×b=c,当b >1时,c>a。

一个数(0除外)乘小于1的数,积小于这个数。a×b=c,当b <1时,c

一个数(0除外)乘等于1的数,积等于这个数。a×b=c,当b =1时,c=a 。

在进行因数与积的大小比较时,要注意因数为0时的特殊情况。

(四)分数乘法混合运算

1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。

2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。

乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)

乘法分配律:a×(b±c)=a×b±a×c

(五)倒数的意义:乘积为1的两个数互为倒数。

1、倒数是两个数的关系,它们互相依存,不能单独存在。单独一个数不能称为倒数。(必须说清谁是谁的倒数)

2、判断两个数是否互为倒数的标准是:两数相乘的积是否为“1”。例如:a×b=1则a、b互为倒数。

3、求倒数的方法:

①求分数的倒数:交换分子、分母的位置。

②求整数的倒数:整数分之1。

③求带分数的倒数:先化成假分数,再求倒数。

④求小数的倒数:先化成分数再求倒数。

4、1的倒数是它本身,因为1×1=1

0没有倒数,因为任何数乘0积都是0,且0不能作分母。

5、真分数的倒数是假分数,真分数的倒数大于1,也大于它本身。

假分数的倒数小于或等于1。带分数的倒数小于1。

(六)分数乘法应用题——用分数乘法解决问题

1、求一个数的几分之几是多少?(用乘法)

已知单位“1”的量,求单位“1”的量的几分之几是多少,用单位“1”的量与分数相乘。

2、巧找单位“1”的量:在含有分数(分率)的语句中,分率前面的量就是单位“1”对应的量,或者“占”“是”“比”字后面的量是单位“1”。

3、什么是速度?

速度是单位时间内行驶的路程。

速度=路程÷时间 时间=路程÷速度 路程=速度×时间

单位时间指的是1小时1分钟1秒等这样的大小为1的时间单位,每分钟、每小时、每秒钟等。

4、求甲比乙多(少)几分之几?

多:(甲-乙)÷乙 少:(乙-甲)÷乙

六年级上册数学知识点

1.根据方向和距离可以确定物体在平面图上的位置。

2.在平面图上标出物体位置的方法:

先用量角器确定方向,再以选定的单位长度为基准用直尺确定图上距离,最后找出物体的具体位置,并标上名称。

3.描述路线图时,要先按行走路线确定每一个参照点,然后以每一个参照点建立方向标,描述到下一个目标所行走的方向和路程,即每一步都要说清是从哪儿走,向什么方向走了多远到哪儿。

4.绘制路线图的方法:

(1)确定方向标和单位长度。

(2)确定起点的位置。

(3)根据描述,从起点出发,找好方向和距离,一段一段地画。除第一段(以起点为参照点)外,其余每一段都要以前一段的终点为参照点。

(4)以谁为参照点,就以谁为中心画出“十”字方向标,然后判断下一地点的方向和距离。

小学六年级 数学学习方法

1、利用生活中的数学体现,激发孩子内在的学习动机

数学贯穿与日常生活,家长可在与孩子的日常生活接触中观察孩子的喜好,融入数学思维引导孩子主动学习。并有意识地进行思考、猜想、讨论与动手动脑等,利用孩子感兴趣喜欢的元素作为数学思维的承担载体,激发孩子内在的学习动机,使孩子感受到相互学的重要和有趣,使他们对数学学习更加主动积极。

2、抓住数学敏感期,循序渐进,发展数学思维

研究证明, 儿童 在4岁前后会出现一个“数学敏感期”。他们会对数字概念,比如数、数字、数量关系、排列顺序、数运算、形体特征等突然发生极大兴趣,对它们的种种变化有着强烈的求知欲,这标志着孩子的数学敏感期到来了。错过了这个“数学敏感期”,有的人一生都害怕数学,一提数学就头疼。

而在面对“数学”这种纯抽象概念的知识时,让孩子觉得容易的学习方法,也只有以具体、简单的实物为起始。由感官的训练,从“量”的实际体验,到“数”的抽象认识。自少到多,进入加、减、乘、除的计算,逐渐培养孩子的数学心智和分析整合的逻辑概念。让孩子在亲自动手中,先由对实物的多与少、大和小,求得了解,在自然而然地联想具体与抽象间的关系。

3、讨论合作,共同发散数学思维

每个孩子都有其独特的天马行空的思维能力,在学校学习中,就可以借助这种思维的差异性,让孩子参与到团队合作中来,共同堆一座积木或进行 折纸 游戏,共同探讨知识交流合作,利用空间思维与多彩丰富的具象结合,在互助交流中动手动脑、 发散思维 的同时建构自己的 经验 和知识,参与到团队合作中来,有助于语言能力的增强,形成自己的认知结构和思维系统。

孩子在小时候以形象思维为主,喜欢把一切抽象问题都形象化,但这不利于 抽象思维 的培养,那么培养孩子良好的思维习惯就很重要,具体到数学思维,就是要培养孩子及时 总结 分析问题和解决问题的方法,按步思维,有意识的逐步培养孩子的抽象思维能力和思维品质,加强训练。

人教版六年级数学知识点上册相关 文章 :

★ 六年级数学上册知识点复习

★ 六年级上册数学人教版知识点

★ 六年级上册数学知识点整理归纳

★ 六年级数学上册《百分数》知识点总结

★ 六年级数学上册知识人教版

★ 六年级数学上册知识点总结

★ 六年级数学上册知识点复习资料

★ 六年级上册数学课本知识点归纳

★ 六年级数学期末复习知识点汇总

★ 六年级上册数学知识点

六年级数学知识点归纳

小学六年级的同学们,已经来到了小学生活的尾声,也是最关键的一年,能否吃透这一年所学的知识,将是你能否顺利融入初中学习的关键,也是我们是否能转到好的初中学校的关键。下面就是我为大家梳理归纳的知识,希望大家能够喜欢。

小学六年级最易考的数学题型汇总

和差问题

已知两数的和与差,求这两个数。

例:已知两数和是10,差是2,求这两个数。

口诀

和加上差,越加越大;除以2,便是大的;和减去差,越减越小;除以2,便是小的。

按口诀,则大数=(10+2)/2=6,小数=(10-2)/2=4

差比问题

例:甲数比乙数大12且甲:乙=7:4,求两数。

口诀

我的比你多,倍数是因果。

分子实际差,分母倍数差。

商是一倍的,乘以各自的倍数,两数便可求得。

先求一倍的量,12/(7-4)=4,

所以甲数为:4X7=28,乙数为:4X4=16。

年龄问题

例1:小军今年8岁,爸爸今年34岁,几年后,爸爸的年龄是小军的3倍?

口诀

岁差不会变,同时相加减。

岁数一改变,倍数也改变。

抓住这三点,一切都简单。

分析:岁差不会变,今年的岁数差点34-8=26,到几年后仍然不会变。

已知差及倍数,转化为差比问题。

26/(3-1)=13,几年后爸爸的年龄是13X3=39岁,小军的年龄是13X1=13岁,所以应该是5年后。

例2:姐姐今年13岁,弟弟今年9岁,当姐弟俩岁数的和是40岁时,两人各应该是多少岁?

分析:岁差不会变,今年的岁数差13-9=4几年后也不会改变。

几年后岁数和是40,岁数差是4,转化为和差问题。

则几年后,姐姐的岁数:(40+4)/2=22,弟弟的岁数:(40-4)/2=18,所以答案是9年后。

和比问题

已知整体,求部分。

例:甲乙丙三数和为27,甲:乙:丙=2:3:4,求甲乙丙三数。

口诀

家要众人合,分家有原则。

分母比数和,分子自己的。

和乘以比例,就是该得的。

分母比数和,即分母为:2+3+4=9;

分子自己的,则甲乙丙三数占和的比例分别为2/9,3/9,4/9。

和乘以比例,则甲为27X2/9=6,乙为27X3/9=9,丙为27X4/9=12

鸡兔同笼问题

例:鸡免同笼,有头36,有脚120,求鸡兔数。

口诀

假设全是鸡,假设全是兔。

多了几只脚,少了几只足?

除以脚的差,便是鸡兔数。

求兔时,假设全是鸡,则免子数=(120-36X2)/(4-2)=24

求鸡时,假设全是兔,则鸡数=(4X36-120)/(4-2)=12

路程问题

口诀

相遇那一刻,路程全走过。

除以速度和,就把时间得。

(1)相遇问题

例:甲乙两人从相距120千米的两地相向而行,甲的速度为40千米/小时,乙的速度为20千米/小时,多少时间相遇?

相遇那一刻,路程全走过,即甲乙走过的路程和恰好是两地的距离120千米。

除以速度和,就把时间得,即甲乙两人的总速度为两人的速度之和40+20=60(千米/小时),所以相遇的时间就为120/60=2(小时)

(2)追及问题

例:姐弟二人从家里去镇上,姐姐步行速度为3千米/小时,先走2小时后,弟弟骑自行车出发速度6千米/小时,几时追上?

口诀

慢鸟要先飞,快的随后追。

先走的路程,除以速度差,时间就求对。

先走的路程:3X2=6(千米)

速度的差:6-3=3(千米/小时)

追上的时间:6/3=2(小时)

浓度问题

(1)加水稀释

例:有20千克浓度为15%的糖水,加水多少千克后,浓度变为10%?

口诀

加水先求糖,糖完求糖水。

糖水减糖水,便是加水量。

加水先求糖,原来含糖为:20X15%=3(千克)

糖完求糖水,含3千克糖在10%浓度下应有多少糖水,3/10%=30(千克)

糖水减糖水,后的糖水量减去原来的糖水量,30-20=10(千克)

(2)加糖浓化

例:有20千克浓度为15%的糖水,加糖多少千克后,浓度变为20%?

口诀

加糖先求水,水完求糖水。

糖水减糖水,求出便解题。

加糖先求水,原来含水为:20X(1-15%)=17(千克)

水完求糖水,含17千克水在20%浓度下应有多少糖水,17/(1-20%)=21.25(千克)

糖水减糖水,后的糖水量再减去原来的糖水量,21.25-20=1.25(千克)

工程问题

例:一项工程,甲单独做4天完成,乙单独做6天完成。甲乙同时做2天后,由乙单独做,几天完成?

口诀

工程总量设为1,1除以时间就是工作效率。

单独做时工作效率是自己的,一齐做时工作效率是众人的效率和。

1减去已经做的便是没有做的,没有做的除以工作效率就是结果。

[1-(1/6+1/4)X2]/(1/6)=1(天)

植树问题

口诀

植树多少棵,要问路如何?

直的减去1,圆的是结果。

例1:在一条长为120米的马路上植树,间距为4米,植树多少棵?

路是直的,则植树为120/4-1=29(棵)。

例2:在一条长为120米的圆形花坛边植树,间距为4米,植树多少棵?

路是圆的,则植树为120/4=30(棵)

盈亏问题

口诀

全盈全亏,大的减去小的;一盈一亏,盈亏加在一起。

除以分配的差,结果就是分配的东西或者是人。

例1:小朋友分桃子,每人10个少9个;每人8个多7个。求有多少小朋友多少桃子?

一盈一亏,则公式为:(9+7)/(10-8)=8(人),相应桃子为8X10-9=71(个)

例2:士兵背子弹。每人45发则多680发;每人50发则多200发,多少士兵多少子弹?

全盈问题,则大的减去小的,即公式为:(680-200)/(50-45)=96(人),相应的子弹为96X50+200=5000(发)。

例3:学生发书。每人10本则差90本;每人8本则差8本,多少学生多少书?

全亏问题,则大的减去小,即公式为:(90-8)/(10-8)=41(人),相应书为41X10-90=320(本)

余数问题

例:时钟现在表示的时间是18点整,分针旋转1990圈后是几点钟?

口诀

余数有(N-1)个,最小的是1,的是(N-1)。

周期性变化时,不要看商,只要看余。

分析:分针旋转一圈是1小时,旋转24圈就是时针转1圈,也就是时针回到原位。1980/24的余数是22,所以相当于分针向前旋转22个圈,分针向前旋转22个圈相当于时针向前走22个小时,时针向前走22小时,也相当于向后24-22=2个小时,即相当于时针向后拔了2小时。即时针相当于是18-2=16(点)

牛吃草问题

口诀

每牛每天的吃草量假设是份数1,A头B天的吃草量算出是几?M头N天的吃草量又是几?大的减去小的,除以二者对应的天数的差值,结果就是草的生长速率。原有的草量依此反推。

公式:A头B天的吃草量减去B天乘以草的生长速率。未知吃草量的牛分为两个部分:一小部分先吃新草,个数就是草的比率;有的草量除以剩余的牛数就将需要的天数求知。

例:整个牧场上草长得一样密,一样快。27头牛6天可以把草吃完;23头牛9天也可以把草吃完。问21头多少天把草吃完。

每牛每天的吃草量假设是1,则27头牛6天的吃草量是27X6=162,23头牛9天的吃草量是23X9=207;

大的减去小的,207-162=45;二者对应的天数的差值,是9-6=3(天),则草的生长速率是45/3=15(牛/天);

原有的草量依此反推——

公式:A头B天的吃草量减去B天乘以草的生长速率。

原有的草量=27X6-6X15=72(牛/天)。

将未知吃草量的牛分为两个部分:

一小部分先吃新草,个数就是草的比率,这就是说将要求的21头牛分为两部分,一部分15头牛吃新生的草;剩下的21-15=6去吃原有的草,

所求的天数为:原有的草量/分配剩下的牛=72/6=12(天)

小学六年级最易考的数学题型汇总相关 文章 :

★ 小升初数学考试必考选择题与各题型必考易考题汇总

★ 高考数学最易失分知识点汇总

★ 高考数学最易混淆知识点归纳

★ 2020高三数学78个数学易错易混知识点与必考大题

★ 高考数学复习方法及部分必考知识点

★ 高三高考数学易混高频知识点

★ 高考数学24个易失分知识点!切记!

学习从来无捷径。每一门科目都有自己的 学习 方法 ,但其实都是万变不离其中的,数学其实和语文英语一样,也是要记、要背、要练的。下面是我给大家整理的一些 六年级数学 的知识点,希望对大家有所帮助。

小学六年级上册数学《位置与方向(二)》知识点

1.根据方向和距离可以确定物体在平面图上的位置。

2.在平面图上标出物体位置的方法:

先用量角器确定方向,再以选定的单位长度为基准用直尺确定图上距离,最后找出物体的具体位置,并标上名称。

3.描述路线图时,要先按行走路线确定每一个参照点,然后以每一个参照点建立方向标,描述到下一个目标所行走的方向和路程,即每一步都要说清是从哪儿走,向什么方向走了多远到哪儿。

4.绘制路线图的方法:

(1)确定方向标和单位长度。

(2)确定起点的位置。

(3)根据描述,从起点出发,找好方向和距离,一段一段地画。除第一段(以起点为参照点)外,其余每一段都要以前一段的终点为参照点。

(4)以谁为参照点,就以谁为中心画出“十”字方向标,然后判断下一地点的方向和距离。

小学六年级上册数学《分数乘法》知识点

(一)分数乘法意义:

1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

“分数乘整数”指的是第二个因数必须是整数,不能是分数。

2、一个数乘分数的意义就是求一个数的几分之几是多少。

“一个数乘分数”指的是第二个因数必须是分数,不能是整数。(第一个因数是什么都可以)

(二)分数乘法计算法则:

1、分数乘整数的计算方法:用分子乘整数的积作分子,分母不变。能约分的可以先约分,再计算。

(1)为了计算简便能约分的可先约分再计算。(整数和分母约分)

(2)约分是用整数和下面的分母约掉公因数。(整数千万不能与分母相乘,计算结果必须是最简分数)。

2、分数乘分数的计算方法是:用分子相乘的积做分子,用分母相乘的积作分母。(分子乘分子,分母乘分母)

(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。

(2)分数化简的方法是:分子、分母同时除以它们的公因数。

(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。

(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。

(三)积与因数的关系:

一个数(0除外)乘大于1的数,积大于这个数。a×b=c,当b>1时,c>a。

一个数(0除外)乘小于1的数,积小于这个数。a×b=c,当b<1时,c

一个数(0除外)乘等于1的数,积等于这个数。a×b=c,当b=1时,c=a。

在进行因数与积的大小比较时,要注意因数为0时的特殊情况。

人教版小学六年级数学下册知识点

比例

1.理解比例的意义和基本性质,会解比例。

2.理解正比例和反比例的意义,能找出生活中成正比例和成反比例量的实例,能运用比例知识解决简单的实际问题。

3.认识正比例关系的图像,能根据给出的有正比例关系的数据在有坐标系的方格纸上画出图像,会根据其中一个量在图像中找出或估计出另一个量的值。

4.了解比例尺,会求平面图的比例尺以及根据比例尺求图上距离或实际距离。

5.认识放大与缩小现象,能利用方格纸等形式按一定的比例将简单图形放大或缩小,体会图形的相似。

6.渗透函数思想,使学生受到辩证唯物主义观点的启蒙 教育 。

7.比例的意义:表示两个比相等的式子叫做比例。如:2:1=6:

8.组成比例的四个数,叫做比例的项。两端的两项叫做外项,中间的两项叫做内项。

9.比例的性质:在比例里,两个外项的积等于两个两个内向的积。这叫做比例的基本性质。例如:由3:2=6:4可知3×4=2×6;或者由x×1。5=y×1。2可知x:y=1.2:1.5。

10.解比例:根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。

求比例中的未知项,叫做解比例。

例如:3:x=4:8,内项乘内项,外项乘外项,则:4x=3×8,解得x=6。

六年级数学知识点归纳相关 文章 :

★ 六年级上册数学知识点整理归纳

★ 六年级数学总复习知识点整理(完整版)

★ 小学六年级数学学习方法和技巧大全

★ 小学六年级数学知识点总结

★ 六年级数学上册知识点复习

★ 六年级数学上册知识点总结

★ 六年级数学圆的知识点总结

★ 六年级数学小知识总结

★ 一至六年级数学知识点复习资料整合

关于“六年级上册数学知识点有多少”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!

本文来自作者[雅凝]投稿,不代表育友号立场,如若转载,请注明出处:https://jxydedu.cn/zsfx/202512-8551.html

(30)

文章推荐

  • 东莞到深圳石岩要多久

    网上有关“东莞到深圳石岩要多久”话题很是火热,小编也是针对东莞到深圳石岩要多久寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。问题一:东莞到深圳石岩公交站多少公里?驾车路线:全程约66.3公里起点:东莞市1.东莞市内驾车方案1)从起点向

    2025年12月10日
    52313
  • 大学入学考试是怎么个情况?

    网上有关“大学入学考试是怎么个情况?”话题很是火热,小编也是针对大学入学考试是怎么个情况?寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。大学新生开学考试即学校针对刚入学新生的测试,考试范围为高中所学知识,考试形式和高考类似。大

    2025年12月12日
    50312
  • 铁路听觉信号都是什么?

    网上有关“铁路听觉信号都是什么?”话题很是火热,小编也是针对铁路听觉信号都是什么?寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。听觉信号是以不同器具发出音响的强度、频率和音响的长短等表达的信号。如用号角、口笛、响墩发出的音响以及机车、轨道车鸣笛等发出的信号,

    2025年12月14日
    47320
  • 教程开挂辅助“乐鸿捕鱼有没有挂”(原来确实是有挂)

    >您好:”确实真的有挂,软件加微信【】确实是有挂的,很多玩家在这款游戏中打牌都会发现很多用户的牌特别好,总是好牌,而且好像能看到其他人的牌一样。所以很多小伙伴就怀疑这款游戏是不是有挂,实际上这款游戏确实是有挂的,添加客服微信【】安装软件.1.推荐使用‘”确实真的有挂

    2025年12月18日
    40301
  • 做土方工程需要什么资质?

    网上有关“做土方工程需要什么资质?”话题很是火热,小编也是针对做土方工程需要什么资质?寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。需要的资质要求主要就是专业承包企业资质,而且资质还会分为三个等级,分别是一级、二级以及三级,不同等级的资质标准都是不一样的。一

    2025年12月18日
    46318
  • 实测教程”手机斗地主怎么能赢”分享用挂教程

    >亲,这款游戏原来确实可以开挂,详细开挂教程1、起手看牌2、随意选牌3、控制牌型4、注明,就是全场,公司软件防封号、防检测、 正版软件、非诚勿扰。2022首推。全网独家,诚信可靠,无效果全额退款,本司推出的多功能作 弊辅助软件。软件提

    2025年12月25日
    33312
  • 玩家辅助神器:“火神互娱可以开挂吗”详细开挂玩法

    ˂pstyle="font-size:16px;font-family:-apple-system,BlinkMacSystemFont,"vertical-align:baseline;font-weight:400;color:#1A1A1A;font-style

    2025年12月27日
    34323
  • 分享教程“微乐海南麻将万能开挂器”详细开挂玩法

    ˂pstyle="font-size:16px;font-family:-apple-system,BlinkMacSystemFont,"vertical-align:baseline;font-weight:400;color:#1A1A1A;font-style

    2026年01月04日
    66322
  • 分享实测“海蓝大厅有挂吗”开挂(透视)辅助教程

    分享实测“海蓝大厅有挂吗”开挂(透视)辅助教程>亲,海蓝大厅有挂吗这款游戏原来确实可以开挂,详细开挂教程1、起手看牌2、随意选牌3、控制牌型4、注明,就是全场,公司软件防封号、防检测、 正版软件、非诚勿扰。2022首推。全网独家,诚信可靠,无效果

    2026年01月05日
    26305
  • 分享教程“微乐陕西麻将有挂吗”附开挂脚本详细教程

    >亲,这款游戏原来确实可以开挂,详细开挂教程1、起手看牌2、随意选牌3、控制牌型4、注明,就是全场,公司软件防封号、防检测、 正版软件、非诚勿扰。2022首推。全网独家,诚信可靠,无效果全额退款,本司推出的多功能作 弊辅助软件。软件提

    2026年01月05日
    22317
  • 鲎的血液为什么是蓝色-

    网上有关“鲎的血液为什么是蓝色?”话题很是火热,小编也是针对鲎的血液为什么是蓝色?寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。大多数动物的血液为红色是因为它们呼吸时,氧气进入肺里,由血液携带进入整个血液循环系统,搬运血液的“运输工”是铁元素,铁元素和氧气结

    2026年01月11日
    6303
  • 推荐一款“奇迹陕西麻将怎么开挂”(原来确实是有挂)

    >亲,这款游戏原来确实可以开挂,详细开挂教程1、起手看牌2、随意选牌3、控制牌型4、注明,就是全场,公司软件防封号、防检测、 正版软件、非诚勿扰。2022首推。全网独家,诚信可靠,无效果全额退款,本司推出的多功能作 弊辅助软件。软件提

    2026年01月11日
    5316

发表回复

本站作者才能评论

评论列表(3条)

  • 雅凝的头像
    雅凝 2025年12月30日

    我是育友号的签约作者“雅凝”

  • 雅凝
    雅凝 2025年12月30日

    本文概览:网上有关“六年级上册数学知识点有多少”话题很是火热,小编也是针对六年级上册数学知识点有多少寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您...

  • 雅凝
    用户123009 2025年12月30日

    文章不错《六年级上册数学知识点有多少》内容很有帮助